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Abstract Monitoring protocols should be designed to

maximize the probability of detecting target species with

limited resources. Most species are imperfectly detected,

hence, they will often be overlooked at sites where they

actually occur, resulting in false-negative errors (i.e. false

absences). Uncertain detection of target species has pro-

found implications for conservation, but can be dealt with

by using adequate survey designs and statistical models.

Butterflies often are monitored with repeated, fixed-route

transect counts (Pollard walks). Even though this survey

method is widely used in temperate regions, its efficiency

in terms of detection probability has never been rigorously

assessed in part owing to a lack of suitable analysis

methods. Here, I use site-occupancy models to explore the

seasonal patterns in detection probability of four California

butterflies using Pollard walks. In an effort to inventory the

butterfly fauna in two natural areas in the eastern foothills

of the Santa Cruz mountains (California), I surveyed

twelve 250 m long transects weekly for 22 weeks. I esti-

mated the detection probability (the probability of record-

ing a species during a single transect walk, given it is

present) of four species. The probability of detecting each

species depended mostly on the monitoring week. Average

detection probability across the season was 64% for

Cercyonis pegala, 56% for Limenitis lorquini, 76% for

Euphydryas chalcedona, and 50% for Lycaena arota.

Based on the mean detection probability, I then inferred the

number of visits necessary to be statistically confident that

a given species was indeed absent from a transect where it

was not observed (i.e. obtaining a false absence rate <5%).

Knowledge of detection probabilities is fundamental to the

optimal design of monitoring programs and the interpre-

tation of their results. The methods applied in this study

provide an efficient and evidence-based method to opti-

mally allocate butterfly monitoring resources across space

(number of transects) and time (number and timing of

visits).
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Introduction

Biodiversity monitoring programs are used for a variety of

purposes, including species distribution atlases, habitat

models, red list assessments, detection of spatial and tem-

poral trends, evaluation of environmental impacts, and

habitat management (Niemela 2000; Yoccoz et al. 2001;

Nichols and Williams 2006). Because the reliable estima-

tion of abundance is in many cases either impossible or

financially/logistically prohibitive, so-called presence/ab-

sence data are often used as a substitute for population size

(Williams et al. 2002; Koleff et al. 2003; MacKenzie

2005). This is especially true for large-scale programs or

programs that target cryptic, rare, or endangered species

(Stork and Samways 1995; MacKenzie et al. 2005).

A confounding factor in all monitoring programs is that

species detection probability (the probability of detecting a

species, given that it is present) is imperfect. False
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absences (assuming that a species is absent from a site

where it is actually present but was overlooked) lead to

underestimates of the geographic distribution of the spe-

cies. This issue has been recognized as fundamental in

many taxonomic groups, including reptiles, amphibians,

birds and mammals (e.g. Bart and Schoultz 1984; Azuma

et al. 1990; Kéry 2002; MacKenzie et al. 2002; Stauffer

et al. 2002; Pellet and Schmidt 2005; MacKenzie et al.

2006; Thorne et al. 2006). In addition, false absences have

been recognized as a source of bias in models of habitat

quality (Tyre et al. 2003; Gu and Swihart 2004; Lütolf

et al. 2006, MacKenzie 2006) and metapopulation dynamic

(Moilanen 2002), as well as red list assessments (Gar-

denfors et al. 2001; Rodrigues et al. 2006) and conserva-

tion planning (Boulinier et al. 1998; Kéry and Schmid

2004).

For these reasons, presence/absence monitoring proto-

cols should be designed to maximize the probability of

detecting the target species with limited resources (Stork

and Samways 1995; Zonneveld et al. 2003). This is espe-

cially true for taxa that are widely used as environmental

state indicators such as butterflies, and for which biased

inferences can cascade down to other taxonomic groups of

interest (Thomas 2005).

In many countries with temperate climates, butterfly

monitoring is often conducted by some variation of so-

called Pollard walks (Pollard 1977; Pollard and Yates

1993), a standardized transect along which butterflies are

counted. This method is popular because its standardized

approach allows more rigorous statistical analysis than

other methods (Jeffcoate 1995; Royer et al. 1998; Mattoni

et al. 2001; Thomas 2005; Collier et al. 2006; Thorne et al.

2006). Pollard walks are based on fixed-route transects that

are surveyed weekly. During each visit, observers count

each butterfly observed along the route and within a fixed

distance to the route.

Several characteristics of this survey method has

been previously evaluated (Pollard 1977; Thomas

1983), but single species detection probability in Pol-

lard walks has rarely been assessed (Thorne et al. 2006;

Kéry and Plattner 2007). Although Pollard walks were

originally developed to detect trends in species abun-

dance, the lack of correspondence between species non-

detection (a monitoring reality) and species absence

from site (a biological reality) clearly needs to be

assessed in order to obtain unbiased data on species

distribution. Here, I estimated the probability of detect-

ing four different species of butterflies on any given

visit. I further used estimates of detection probability to

support quantitative arguments for refining future but-

terfly monitoring protocols making it possible to

examine the ability to statistically infer species absence

from a transect.

Methods

Study area

I inventoried the butterflies along twelve 250 m transects

located on the eastern foothills of the Santa Cruz Moun-

tains, California. Eight of these transects were located

within Stanford’s Jasper Ridge Biological Preserve (San

Mateo county, 37�24¢17¢¢ N, 122�13¢28¢¢ W) and four were

located in Palo Alto’s Foothills Park (Santa Clara county,

37�21¢34¢¢ N, 122�10¢57¢¢ W). Transects were placed in

order to represent the major vegetation associations present

at both locations. Vegetation is typical of the Upper Son-

oran Life Zone (Merriam 1898) and consists mainly of

open oak-madrone woodland (characterized by Quercus

douglasii, Q. agrifolia, Arbutus menziesii, Heteromeles

arbustifolia), mixed chaparral (Rhamnus californica,

Artemisia californica, Mimulus aurantiacus, Baccharis

pilularis, Rubus spp.), and grasslands (Lolium multiflorum,

Bromus hordeaceus, Brachypodium distachyon, Briza

maxima, Avena fatua/barbata, Centaurea solsticialis).

Monitoring protocol

The monitoring protocol was based on Pollard walks

(Pollard 1977; Pollard and Yates 1993). Each transect was

visited weekly for 22 weeks between March and Septem-

ber 2006. Transects were visited between 10:00 and 17:00

on clear days. Wind speed was on average 1.4 m/s (mini-

mum 0.4 m/s, maximum 4.8 m/s) and temperature was on

average 23.7�C (minimum 12.4�C, maximum 36.5�C).

Transects were walked in one direction at a slow and even

pace (~1–2 km/h) for a duration of 15–20 min. Each but-

terfly (Rhopalocera: Papilionoidea and Hesperioidea) seen

within a virtual 5 m observation cube projected ahead of

the observer was counted (see state of the art in Thomas

2005; Pollard and Yates 1993). Individuals were either

identified by sight (sometimes using close-focus 10· bin-

oculars) or captured with a net for closer examination.

Nomenclature follows the North American Butterfly

Association (Cassie et al. 2001).

Statistical analysis

In order to estimate both single-visit detection probability

(p) and site (transect) occupancy (w), I applied a method

similar to mark-release-recapture (MacKenzie et al. 2002).

This model is based on a species’ detection history on

multiple transects. A detection history documents whether a

species was seen (1) or not (0) on each visit. This so-called

site-occupancy modeling framework assumes that occu-

pancy state of a site by a species does not change across the

sampling occasions. In capture–recapture jargon, this is the
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closure assumption (MacKenzie and Kendall 2002; Mac-

Kenzie et al. 2006). Transects are thus assumed to be either

occupied or empty during the study period. I therefore re-

stricted analyses for each species to the time span during

which the species was flying in at least one transect.

I selected species that were univoltine or multivoltine

with identifiable broods (in which case distinct analyses

were performed for each brood), because they were the

most likely to have a clearly identifiable flight periods. I

only considered resident species with low vagility (tens to

hundreds of meters) and species that were detected in at

least three of the 12 transects. Ecological data on the

species were collated from Scott (1986), Fleishman et al.

(1997), and Glassberg (2001). Four species (Table 1) were

included in the analysis: Cercyonis pegala (subfamily Sa-

tyrinae), Euphydryas chalcedona (Melitaeninae), the first

brood of Limenitis lorquini (Limenitidinae), and Lycaena

arota (Lycaeninae).

I constructed a set of four models representing four

major hypotheses regarding detection probability and ap-

plied the models to all four species. All models assumed

that site occupancy was constant [denoted w(.)]. Because

the data set was relatively small, I kept candidate models

simple (i.e. with few parameters). Model 1 represented the

hypothesis of a constant detection probability [denoted

p(.)] across the flight season of a species. Model 2 assumed

that detection probability was a function of the species’

seasonal abundance, modeled with a quadratic relationship

between survey week and detection probability

[(p(WEEK + WEEK2)]. To test whether weather affected

detection probabilities within the range of temperature and

wind speed considered, I constructed two additional mod-

els. Model 3 [p(TEMP + TEMP2)] assumed that there was

an optimal survey temperature maximizing detection

probability (detection probability as a quadratic function of

temperature). Model 4 [p(WIND)] assumed that wind

speed affected detection probability in a linear fashion.

Weather data (hourly temperature and wind speed) were

collected from Stanford’s Jasper Ridge Biological Preserve

weather station.

I used an information theoretic approach to model

selection (Burnham and Anderson 2002; Johnson and

Omland 2004). As recommended when the ratio between

sample size and number of model parameters is less than 40

(Burnham and Anderson 2002), I used the Akaike Infor-

mation Criterion (AICc) for small samples. AICc model

weights were derived and models ranked in a decreasing

weight order. The sum of all Akaike weights across all

candidate models is one. Models with lowest AICc were

considered most parsimonious, and pairs of models with an

absolute difference in AICc of less than 2 were considered

equally good (Burnham and Anderson 2002).

Detection probability was calculated for each visit by

averaging across all four models (Burnham and Anderson

2002). This procedure derives parameter estimates (detec-

tion probability p and occupancy w) for each week from all

candidate models on the basis of each model’s weight. I

then used the model-averaged detection probabilities ob-

tained for each visit and calculated both the maximum

(pmax) and the average detection probability (pmean) for each

species across its flight period. Maximum likelihood opti-

mization, model selection and model averaging were per-

formed with program MARK 4.3 (Cooch and White 2001).

If detection probability is known, one can estimate

the probability of recording a false absence (Tyre et al.

2003; Pellet and Schmidt 2005). After one visit, the

probability of a false absence is (1 – p). After n visits, the

probability decreases to (1 – p)n. To be 95% confident that

a given species with pmean average detection probability is

absent from a site, a minimum of Nmin = log(1 – 95%)/

log(1 – pmean) visits must be made during the flight period.

Results

Monitoring results

All four species were imperfectly detected when present in

a given transect, with a number of weeks detected always

less than the length of the flight period (Table 1).

Table 1 Survey data of four butterfly species in twelve 250 m transects of the Santa Cruz Mountain foothills

Species Apparent

occupancy

Flight season

(weeks)

Times detected (when

present) (SD)

Average number of individuals recorded per

visit (when present) (SD)

Total number of

records

Cercyonis pegala 0.50 9 5.7 (1.6) 2.0 (1.9) 68

Euphydryas
chalcedona

0.75 9 6.3 (1.7) 6.7 (1.1) 399

Limenitis lorquini
(1st brood)

0.42 9 5.0 (1.6) 1.8 (1.2) 40

Lycaena arota 0.50 8 3.8 (1.3) 3.2 (2.7) 74

The apparent occupancy is the proportion of transects where the species was detected. The flight season is defined as the interval between the first

and the last observation of the species. Transects were walked weekly
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E. chalcedona was by far the most abundant species, while

all three other species had relatively comparable abundance

(total number of individuals recorded).

Model selection and estimates of detection probabilities

In three out of four species (C. pegala, E. chalcedona, and

L. lorquini), detection probability was best modeled as a

function of monitoring week (seasonal abundance). For

these species, model 2 [p(WEEK + WEEK2) w(.)] fitted

the presence/absence data best (Table 2). The effect was

especially strong for E. chalcedona, where model 2 had a

weight of almost 1. For the fourth species (L. arota),

however, model 1 [p(.) w(.)], which assumed a constant

detection probability, performed as well as model 2

(absolute DAICc of less than 2). The model selection thus

provides equal support to the two hypotheses. Across

species, there was little support for the weather models 3

(temperature) and 4 (wind speed).

Model-averaged estimates of detection probabilities

varied considerably over time for all four species, reflecting

the strong weight of models based on seasonal abundance

(Fig. 1). For all species, detection probability varied over

time with a maximum detection probability (pmax) in the

middle of the flight season. The maximum detection

probability (pmax), however, varied considerably between

species, from a high value of 99% for E. chalcedona to a

low of 60% for L. arota (Table 2, Fig. 1). Similarly, the

average detection probability (pmean) varied from 50% for

L. arota to 77% for E. chalcedona (Table 2).

Given the average detection probability estimates

(pmean), I estimated the false absence rate (the probability

of not detecting a species when it was present) as a function

of the number of visits to each transect (Fig. 2). A protocol

aimed to detect E. chalcedona in at least 95% of the

locations where it is present should include a minimum of

three visits per site across the flight season. A protocol

designed to detect L. arota in at least 95% of the locations

where it is present should include at least 5 visits spread

across the flight season (Fig. 2). A minimum of four visits

per transect appears necessary to detect C. pegala and L.

lorquini (Table 2). Given the fact that I made between 8

and 9 visits to each transect during the flight period of those

four species (Table 1), model averaged estimates of

occupancy (w) were always within one SE of the apparent

occupancy (Table 2), suggesting that the protocol I used

allowed the detection of all four species in every transect

where they were present.

Discussion

Specificities in detection probability

Monitoring programs should acknowledge the fact that

species are unlikely to be perfectly detected and that

uncertainty will remain between non-detection and true

Table 2 Model selection and parameter estimation. AICc is the model Akaike Information Criterion for small samples, DAICc is the absolute

difference in AICc with the best model, w is the model weight, and K is the number of parameters included in the model

Species Model AICc DAICc w K pmax (SE) pmean (SE) Nmin w

Cercyonis pegala 2 p(WEEK + WEEK2) w(.) 90.80 0.00 0.73 4 0.774 (0.108) 0.641 (0.149) 4 0.500 (0.144)

1 p(.) w(.) 93.16 2.35 0.22 2

4 p(WIND) w(.) 96.82 6.02 0.04 3

3 p(TEMP + TEMP2) w(.) 98.69 7.89 0.01 4

Euphydryas chalcedona 2 p(WEEK + WEEK2) w(.) 70.25 0.00 1.00 4 0.985 (0.011) 0.766 (0.286) 3 0.727 (0.134)

1 p(.) w(.) 87.54 17.29 0.00 2

4 p(WIND) w(.) 91.46 21.21 0.00 3

3 p(TEMP + TEMP2) w(.) 92.54 22.29 0.00 4

Limenitis lorquini (1st brood) 2 p(WEEK + WEEK2) w(.) 78.02 0.00 0.71 4 0.788 (0.109) 0.555 (0.196) 4 0.416 (0.142)

4 p(WIND) w(.) 80.83 2.81 0.17 3

1 p(.) w(.) 81.80 3.78 0.11 2

3 p(TEMP + TEMP2) w(.) 87.06 9.05 0.01 4

Lycaena arota 1 p(.) w(.) 85.56 0.00 0.45 2 0.595 (0.134) 0.502 (0.091) 5 0.507 (0.146)

2 p(WEEK + WEEK2) w(.) 85.64 0.08 0.44 4

4 p(WIND) w(.) 89.21 3.65 0.07 3

3 p(TEMP + TEMP2) w(.) 90.55 5.00 0.04 4

pmax and pmean are the maximum and mean values of the model-averaged detection probability p. Nmin is the minimum number of visits to be

95% confident that the species is absent and w is the proportion of transects in which the species was present
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absence. Here, I demonstrate that, in four California but-

terfly species, detection probability in Pollard walks is

imperfect, that it is time-dependent, and strongly depends

on species seasonal abundance.

The fact that all four species included in the analysis

have detection probabilities strongly dependent on survey

week emphasizes the importance of emergence timing in

the probability of detecting any given species, a pattern

which is not surprising to any entomologist (Zonneveld

et al. 2003). Species abundance is expected to be at a

maximum in the middle of the flight season, thus maxi-

mizing individual detection probability (Fig. 1). In con-

trast, the maximum detection probability varied strongly

among species, in part as a result of its behaviour. Males of

C. pegala patrol all day in moist grassy area to seek fe-

males and courtship includes frequent vertical flights.

Individuals of E. chalcedona also frequently patrol con-

spicuously on hilltops and clearings. Males of L. lorquini

alternately perch and patrol about 3–4 m above the ground.

L. arota, by contrast, inhabits open woodland and clearings

where males perch and await passively for females (Scott

1986). L. arota also seldom flies more than tens of meters

(Fleishman et al. 1997). These behaviours are evident in

the results, where the three patrolling species were 18–40%

more likely to be seen than the passive species. The

average detection probabilities obtained here are compa-

rable to those obtained by Pellet et al. (2007) for Speyeria

nokomis apacheana (45%) and Maculinea nausithous

(75%).

Fig. 1 Model-averaged detection probabilities (mean ± SE: lines) and weekly abundance (bars) of four butterfly species of California

Fig. 2 False absence probability (mean ± SE) after n visits for two

species with different average detection probability (pmean). The

dashed line indicates the 5% false absence rate
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The fact that models including meteorological covari-

ates did not perform well (total model weight for model 3

and model 4 on average 0.09 across all four species) re-

veals that the sampling conditions (temperature and wind

speed) were generally adequate to monitor the presence/

absence of the four target species. While weather did not

seem to be a major factor affecting butterfly flight in our

study area, it is very likely to be otherwise in regions with

more variable daily weather (i.e. mountains, deserts, etc.)

where butterflies have narrower flight windows.

Species relative abundance (as measured by the total

number of individuals recorded) is arguably another factor

that influences detection probability (Zonneveld et al.

2003). The apparent relative population size of E. chalce-

dona was high (n = 399), resulting in a high probability of

detecting at least one individual per visit. Apparent relative

abundance of the other three species was similar, but

average detection probabilities were different (see Kéry

and Plattner 2007 for another example). Detection proba-

bility of these species may depend largely on primary

vegetation association (e.g. forest versus grassland species)

and behaviour (Royer et al. 1998). It is also likely that a

given species detection probability will vary between

location (Link et al. 1994) as a result of the ability of the

observer to efficiently detect the species in different tran-

sects. To test for heterogeneity of detection probability in

various vegetation associations, I ran a mixture model [p(2-

group mixture) w(.)] (Pledger 2000) for all four species

using program PRESENCE (MacKenzie et al. 2006). For

all four species, the mixture model ranked last or second

before last (DAICc ranging from 4.5 for L. arota to 37.7 for

E. chalcedona) suggesting that it was not necessary to

model heterogeneity in detection probability explicitly.

Occupancy models allowing for imperfect detectability

Populations were assumed to be closed during the time

frame analyzed. Although I restricted the analyses for each

species to the time span during which that species was

observed in at least one transect, microclimatic difference

between transects might account for staggered emergences.

However, given the fact that all transects experienced

identical climate, and had relatively comparable slope and

exposure, it is unlikely that staggered emergence could

account for major changes in occupancy (although this fact

does not exclude changes in abundance during the flight

season). Violations of this the closed-population assump-

tion would bias the values of detection probabilities at the

beginning and end of the season (when populations are

experiencing either delayed emergence or precocious

population disappearance), thus affecting pmean more than

pmax.

I also restricted analysis to univoltine species and mul-

tivoltine species with clearly identifiable broods because

the brood seasonal abundance curve was expected to be

easier to model with quadratic terms. However, with a

larger sample size, it would be relatively easy to model

double-brooded species using higher polynomial (cubic)

relationships.

Monitoring implications

Monitoring may be conducted for many reasons including:

to provide an initial estimate of detection probability for a

target species or to determine distribution patterns after

detection probabilities have been estimated.

In the first case, it has been demonstrated that increasing

the number of transects visited had little impact compared

to increasing the number of visits to sites (Wintle et al.

2004) when trying to accurately estimate detection proba-

bility. Therefore, as illustrated by the present project, I

would advise, as a rule of thumb, to apply a weekly count

to a limited number of transects (>10) where species are

likely to occur (MacKenzie and Royle 2005). Given that

most species will be flying during at least 6–8 weeks, this

should yield a long enough detection history to infer

detection probability reasonably well, as was the case here

with four relatively abundant species. However, for species

with shorter flight period or a priori low detection proba-

bility, sampling should be intensified (to two or three visits

per week) in order to obtain a detection history long en-

ough (at least 8 sampling events) to make reliable and

accurate inference on detection probabilities.

In the second case, I show here that, if prior knowledge

of species flight period curve exists, then visits can be

made at the time of peak abundance and the number of

visits necessary (Nmin) to reach a predefined level of false

absence reduced accordingly, using the maximum detec-

tion probability estimate (pmax). Knowledge on when to

visit transects to maximize detection probability usually

relies on published materials and personal experience. In

most cases, however, the emergence date of butterflies

fluctuates each year as a result of climatic variability and

uncertainty remains on the timing of peak activity (Weiss

et al. 1993; Sparks and Yates 1997; Roy and Sparks 2000;

Zonneveld et al. 2003, Nowicki et al. 2005). Therefore, the

most adequate and conservative estimate of detection

probability is the average across the species flight period

(pmean).

I demonstrated here that a given presence/absence sur-

vey can yield data of variable quality for different butter-

flies. It might be therefore difficult to design a generally

efficient multi-species survey protocol (Barrows et al.

2005). When detection probabilities are taken into account,

it is relatively easy to adapt the number of necessary
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transect visits to be sufficiently confident that the false

absence rate of a target species is kept below a predefined

level (e.g. 5%). This might prove extremely important in

the case of costly large scale monitoring program when

both human and financial resources are limited (Field et al.

2005). In such situation, knowledge on the quality of data

obtained through a given protocol can help allocate opti-

mally survey efforts. The trade-off between number of sites

(transects) visited and number of visits made to each site

can then be made depending on the research questions that

are being addressed (MacKenzie and Royle 2005).

Conclusions

Preliminary monitoring protocols should be designed to asses

target species detection probability by surveying repeatedly a

set of locations where the species is either known to occur or

very likely to be present. Once quantitative data are available

on a species detection probability, protocols can be imple-

mented across larger areas and credible evidence-based

occupancy data can be collected while optimizing financial

resources allocation at the same time.

Because it is feasible to demonstrate with a predefined

level of confidence that a target species is absent from a

site, it is possible to reverse the burden of proof in envi-

ronmental impact assessments and ask developers to

demonstrate, not species presence, but species absence.

This could generate a major paradigm shift in applied

conservation science and practice.
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