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Abstract Occupancy has several important advantages
over abundance methods and may be the best choice for

monitoring sparse populations. Here we use simulations to

evaluate competing designs (number of sites vs. number of
surveys) for occupancy monitoring, with emphasis on

sparse populations of the endangered Karner blue butterfly

(Lycaeides melissa samuelis Nabokov). Because conser-
vation planning is usually abundance-based, we also ask

whether detection/non-detection data may reliably convert

to abundance, hypothesizing that occupancy provides a
more dependable shortcut when populations are sparse.

Count-index and distance sampling were conducted across

50 habitat patches containing variably sparse Karner blue
populations. We used occupancy-detection model esti-

mates as simulation inputs to evaluate primary replication

tradeoffs, and used peak counts and population densities to
evaluate the occupancy-abundance relationship. Detection

probability and therefore optimal design of occupancy

monitoring was strongly temperature dependent. Assuming
a quality threshold of 0.075 root-mean square error for the

occupancy estimator, the minimum allowable effort was
360 (40 sites 9 9 surveys) for spring generation and 200

(20 sites 9 10 surveys) for summer generation. A mixture

model abundance estimator for repeated detection/non-
detection data was biased low for high-density and low-

density populations, suggesting that occupancy may not

provide a reliable shortcut in abundance-based conserva-
tion planning for sparse butterfly populations.

Keywords Butterflies ! Study design ! Survey effort !
Detection probability ! Distance sampling ! Karner blue

Introduction

The continuous index count is still among the most popular

metrics for monitoring plant and animal populations

(Thomas 2005; Marsh and Trenham 2008). However,
count-index methods unrealistically assume the number of

observed individuals is a constant fraction of the number

actually present, such as detecting a constant proportion of
butterfly abundance from year to year (Pollard et al. 1993;

Roy et al. 2007; Harker and Shreeve 2008; Nowicki et al.
2008). Recently there has been strong discourse on whether
population index methods accurately describe the param-

eter of interest, population size (Johnson 2008). Anderson

(2001; 2003) asserts that index methods that do not account
for detection probability (p) are nearly worthless because

the probability is almost never perfect (p = 1) or constant
among different habitats, observers, etc. Because p is

almost always less than one and varies with myriad site-

specific and time-varying factors (MacKenzie et al. 2006),
a true population estimate requires, at a minimum, dividing

the counts by p.
The Pollard-Yates index method and its derivatives have

long been used for butterfly conservation planning (Pollard

and Yates 1993; van Swaay et al. 2008). This approach

involves counting the butterflies during repeated surveys
and drawing inferences from the maximum or average

number seen. There are several alternatives to relying on

raw index counts for butterfly monitoring. Zonneveld
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(1991) developed a theoretical model to estimate butterfly

mortality rate and provide an index of abundance from a
sequence of Pollard-type counts. Although his model

implicitly accounts for butterflies that eclose and die

between survey events, the overall abundance (i.e., brood
size, number of recruits in one generation) may be biased

low because undetected butterflies present on surveys are

not included. Distance sampling (Buckland et al. 2001)
may overcome the false-absence problem on surveys, does

not require handling of animals, and is being applied to
butterflies (Brown and Boyce 1998; Powell et al. 2007;

Pocewicz et al. 2010; Isaac et al. 2011), but it hinges on

several restrictive assumptions, does not directly estimate
brood size, and may not work well for extremely sparse

populations (Bart et al. 2004). Mark and recapture methods

account for detectability and adult turnover during the
season and thus directly estimate brood size, but are labor-

intensive, data-demanding (hard to attain sufficient recap-

tures with sparse populations), analytically complex, and
potentially destructive for small and fragile animals (Singer

and Wedlake 1981; Gall 1984; Murphy 1987; Mattoni et al.

2001; Haddad et al. 2008).
Another alternative to count-index methods is occu-

pancy monitoring. In conservation, occupancy is typically

regarded as inferior to abundance because it does not
provide early warning of population declines (Pollock

2006; Joseph et al. 2006). However, by assuming that a

species’ detectability is largely a function of its abundance,
and recognizing that change in population size typically

accompanies change in proportion of area occupied

(Gaston et al. 2000; Longcore et al. 2010), it is possible to
reliably estimate abundance and population trend from

occupancy data (He and Gaston 2000; Royle and Nichols

2003; Pollock 2006; Zhou and Griffiths 2007; Hui et al.
2009; Hwang and He 2011; but see Strayer 1999). Detec-

tion/non-detection data tend to approximate patch-level

processes with far less effort than abundance surveys
(MacKenzie et al. 2003; Zhou and Griffiths 2007), and may

provide the best information under limited resources. For

example, Joseph et al. (2006) determined that under
financial constraints and for low density and/or hard-

to-detect species, presence-absence methods rivaled or

surpassed abundance methods at tracking changes in pop-
ulation size and assigning conservation status. Indeed,

large year-to-year fluctuations may confound the detection

of trends in butterfly abundance data (van Strien et al.
1997; Zonneveld et al. 2003).

Occupancy is often the best choice for monitoring

endangered species and other taxa surviving at levels too
low for abundance-based modeling (MacKenzie et al.

2006). Conservation of species persisting as small popu-

lations over large areas may require a shift in thinking from
abundance to distribution (Zonneveld et al. 2003; Joseph

et al. 2006). Such may be the case for the endangered

Karner blue butterfly (Lycaeides melissa samuelis Nabo-
kov) within portions of its range. Here we use simulations

to evaluate competing designs (number of sites vs. number

of surveys) for Karner blue occupancy monitoring, with
emphasis on sparse populations (i.e., locally rare or low-

density, \10 butterflies per hectare). However, because

conservation planning is usually abundance-based, we also
ask whether detection/non-detection data may reliably

convert to abundance, hypothesizing that occupancy pro-
vides a more dependable shortcut when populations are

sparse (the usual case for endangered species). Despite

numerous studies on sampling and analysis issues for
butterflies (e.g., Haddad et al. 2008; Isaac et al. 2011), ours

may be the first to explore primary occupancy design

tradeoffs and the macroecological occupancy-abundance
relationship for sparse populations.

Methods

Study system

The Albany Pine Bush Preserve (42"420N, 73"520W, ele-

vation 79–110 m) is located near the Mohawk and Hudson
rivers confluence in the densely populated capital region of

east-central New York State. The area is characterized by a

gently rolling sand plain and cold-temperate humid climate
(Barnes 2003). Major vegetation types in the preserve

include xerophytic early-successional barrens, thickets, and

forests dominated by scrub oak (Quercus ilicifolia Wang.,
Q. prinoides Willd.) and pitch pine (Pinus rigida Mill.),

along with semi-natural grasslands, red maple swamps,

Appalachian oak-pine forests, and successional hardwood
forests. Key threats include fire suppression and invasive

plants along with continuing economic pressure to develop

the area for housing, commerce, and industry.
The Pine Bush is one of four metapopulation recovery

areas in the New York federal Karner blue recovery unit

(USFWS 2003). It is the type locality for the Karner blue,
which now survives in open-canopy scrub oak barrens, old

fields, powerline corridors, and other herbaceous or

shrubby dominated areas supporting its host plant, wild
blue lupine (Lupinus perennis L.). Preserve managers use

controlled burns, seed collection and plantings, mechanical

treatments, and herbicides to create, restore, and maintain
Karner blue habitat (Bried 2009; Bried and Braun 2009).

The Pine Bush is ideally suited for the study objectives

because its Karner blue population has steadily declined in
recent years (Albany Pine Bush Preserve Commission,

unpublished data). Most if not all subpopulations in this

study area are currently (2010 field season) below the 10
butterflies per hectare threshold mentioned earlier to define
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‘‘sparse’’. Brood size evaluation in 2010 estimated fewer

than 1,000 adult Karner blue recruited across 90 ha of
sampled Pine Bush habitat, compared with over 25,000

adult Karner blue across 100 ha sampled in a recovery area

(Saratoga Sandplains) located about 50 km north. With low
encounter rates (\1 butterfly per 100 m of transect), Karner

blue abundance monitoring in the Pine Bush is becoming

statistically inefficient and difficult to assess.

Surveys

Surveys of Karner blue imagos were conducted in 50

habitat patches across preserve land, where a ‘‘patch’’ is
defined mainly by the presence of lupine (Grundel and

Pavlovic 2007). Most patches in the Pine Bush are delim-

ited by roads, forest, and other well-defined edges. Many of
the patches were originally mature, closed-canopy forest

but are now fields planted with lupine, nectar species, and

dense-foliage grasses. Few of the patches have ever been
burned, but most have been mowed at least once in the past

decade. Patches ranged in size from \0.1 ha to 10.3 ha

(mean ± SD = 1.7 ± 2.6 ha). Only one patch was iso-
lated ([1 km from all others), all but six were within

200 m of another study patch, and half were within 200 m

of a patch known to be occupied during the study; dispersal
of Karner blue is typically less than 1 km, and non-dis-

persal movement is confined within about 200 m (Knutson

et al. 1999; USFWS 2003).
Data collection took place in 2010 during 18 May to 04

June (spring brood) and 29 June to 22 July (summer

brood). Surveys were conducted at 2–5 day intervals
between 0900 and 1800 h on non-rainy days and when air

temperature exceeded 18"C. Surveys were repeated six

times during spring brood and eight times during summer
brood; the New York Karner blue recovery team currently

sets an arbitrary minimum of five surveys per brood.

Different sets of patches were randomly assigned to
seven trained observers, and there was no rotation of

observers or patch order across surveys. Lack of rotation

was due to logistical constraints, but we were able to
incorporate observer and diel bias in the analysis. Modified

Pollard-Yates transects (Pollard and Yates 1993) were used

in 37 patches. Transect routes began from the site access
point and zigzagged at approximate right angles across the

site, with search time standardized by site area (see Kadlec

et al. 2011). Observers walked at a steady pace gently
swinging a butterfly net above the vegetation to stir any

resting Karner blue into motion, and made frequent stops to

scan the area for movement. All Karner blue seen at rest or
in flight were counted. Observers tried to mentally track

individuals and minimize double-counting, which was

relatively easy given the generally low numbers across the
study area.

Line-transect distance sampling (Buckland et al. 2001)

was used in the remaining 13 patches. It was impractical to
conduct distance sampling at 50 sites, so distance sampling

was done at a subset of sites with historically high Karner

blue numbers. This helped to increase observations for
distance modeling and allowed estimating a large fraction

of the preserve population. Transects were placed sys-

tematically from a random starting point 5–20 m from the
patch edge. Transects were parallel and spaced 20 m apart

except in the two largest sites where spacing was 30 m.
Transects ran perpendicular to the patch’s longest axis and

extended from one edge to the other. An observer walked

slowly along each transect and recorded perpendicular
distances to Karner blue in graduated intervals (0–0.5,

0.5–1.0, 1.0–1.5, 1.5–2.25, 2.25–3.0, 3.0–4.0 m) on both

sides of the line. Distances were measured to the resting
butterfly or its position prior to evasive movement. For

butterflies in flight, distance was measured where the but-

terfly passed through an imaginary vertical plane oriented
perpendicular to the transect line about an arm’s length in

front of the observer. Butterflies showing communal

behaviors of puddling, nectaring, chasing, or mating were
recorded as cluster observations (Buckland et al. 2001),

with distance measured at the geometric center.

Optimal design for occupancy monitoring

We evaluated competing design options for occupancy
using the Single-season Occupancy study Design Assistant

(SODA). This new simulation-based software program

helps to evaluate the tradeoff between spatial (site) and
temporal (survey) replication (Guillera-Arroita et al. 2010).

Design based on simulations rather than asymptotic prop-

erties of the estimators is superior under small sample size
or when dealing with rare and elusive species (Guillera-

Arroita et al. 2010). Depending on the project require-

ments, the SODA program allows the user to prioritize
between maximizing estimator quality (minimize variance)

or minimizing total effort. Users can run an automated

search to explore different combinations of site and survey
replication. Performance of the chosen design depends

heavily on the simulation inputs, which are occupancy and

detection probabilities. To estimate these parameters, we
used the MacKenzie et al. (2003) multi-season extension to

the closed population modeling framework of MacKenzie

et al. (2002), as implemented in PRESENCE v3.1 (Patux-
ent Wildlife Research Center, United States Geological

Survey, Laurel, MD). Rather than treat the broods as

temporally separate entities, the multi-season approach
implicitly incorporated potential density-dependent regu-

lation from spring to summer generations (Pickens 2007;

Fuller 2008). It also estimated the dynamic occupancy
parameters of local extinction and colonization, helping
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account for potential metapopulation structure (USFWS

2003; Guiney et al. 2010).
We tested a variety of auxiliary variables defined in

Table 1. Detection probability was modeled in relation to

air temperature, wind speed, sky cover, weather (temper-
ature ? wind speed ? sky cover), time of day, and

observer. Modeling diel heterogeneity in detectability is

important (Bried et al. 2011) and in this case accounted for
the inherent bias of not rotating the patch order. We also

parameterized a model that allowed detection probability to

vary between broods. We did not, however, estimate sur-
vey-specific probabilities (accounting for variation within

broods; Pellet 2008) due to small sample to variable ratios

and potential over-dispersion.
Occupancy (patch use) was modeled as a function of

subpopulation, patch isolation, patch area, lupine, canopy,
last treatment, and captive-release (see definitions in

Table 1), all of which may influence Karner blue popula-

tion dynamics (Grundel et al. 1998a, b; Lane and Andow
2003; Grundel and Pavlovic 2007; Pickens and Root 2008,

2009; Gifford and O’Brien 2010). Colonization was mod-

eled as a function of patch isolation and captive-release,
and extinction in relation to patch area and spring brood

peak count. Isolation and area of habitat patches are key

drivers of metapopulation vital rates (Hanski et al. 1997;
Pellet et al. 2007), and we view distance to the release site

as a special case of isolation. Spring brood peak count

served as a baseline for potential population growth
between spring and summer broods.

Similar to Bailey et al. (2004), we first modeled the

detection covariates one at a time while holding the other
parameters constant, repeating for the covariates of occu-

pancy, colonization, and extinction. The null model (no

covariates) was included for reference in each comparison.
We used Akaike’s Information Criterion adjusted for small

samples (AICc) to select the best covariate(s) for each

parameter, and then combined these terms into a final
model. If multiple covariates were strongly supported

(DAICc\ 2.0; Burnham and Anderson 2002), we used
model-averaging to attain the final occupancy and detec-

tion probabilities. To help with numerical convergence, all

continuous covariates were standardized by their maximum
value (peak count, captive-release, patch area) or to unit

mean and variance (temperature, wind speed, time of day).

To find an optimal number of sites (S) and surveys
(K) for future Karner blue occupancy monitoring, we

Table 1 Covariates used to model metapopulation dynamics (patch use, colonization, extinction) and detection probability of Karner blue
imagos in the Albany Pine Bush Recovery Area, New York State, USA

Variable Definition and measurement

Brood Spring versus summer generations

Canopya 5–30% cover, or not (\5% or[30%), of woody vegetation structure at[2 m height

Captive-
releaseb

Distance to the nearest study site receiving captive-reared Karner blue pupae during 2008–2010

Last treatment Time (1–3, 4–5,[5 years) since last restoration or maintenance treatment (mowing, burning, tree removal)

Lupinec Greater than or less than 970 stems per hectare

Observer 7 people total, each assigned to survey a fixed set of patches in both broods

Patch area Estimated area of the site

Patch isolationd Greater than or less than 200 m from an occupied patch

Peak count Greatest number of Karner blue seen out of repeat surveys along modified Pollard-Yates transects or distance sampling
transects

Sky cover Clear (\5% cloud cover), mostly sunny (5–33%), partly sunny (33–66%), mostly cloudy (66–95%), or overcast ([95%)

Subpopulation Single habitat patch, or any group of patches\ 200 m apart

Temperature Mean recorded for 3 min using a Kestrel# 2000 Pocket Weather Meter

Time of day Start time (nearest minute) of a site survey

Wind speed Mean recorded for 3 min using a Kestrel# 2000 Pocket Weather Meter

a Measured either by point-intercept sampling and densitometer along randomly placed transects (Bried and Braun 2009), or by a site-wide
visual estimate; the desired cover range (5–30%) corresponds to reported benefits of partial canopy and shade for Karner blue oviposition and
larval growth (Grundel et al. 1998a,b; Lane and Andow 2003; Pickens and Root 2008, 2009)
b See Gifford and O’Brien (2010) for Karner blue rearing and release protocols in the Pine Bush, and Webb (2010) for full details on Karner blue
propagation efforts rangewide
c Measured by complete census or random sampling (Bried 2009; Bried and Braun 2009), stem threshold derived from Fuller (2008)
d ‘‘Occupied’’ = at least one Karner blue adult seen in 2010, and 200 m corresponds to the upper range of typical Karner blue flight distance
(Knutson et al. 1999; USFWS 2003)
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alternately used the mean and minimum of top-model

occupancy (ŵmean, ŵmin) and detection (p̂mean, p̂min) prob-

abilities as inputs into SODA. Design was based on

simulations rather than asymptotic approximations
(MacKenzie and Royle 2005) because total study effort

(S 9 K) was not especially large (in the statistical sense),

and because we expected relatively low occupancy and
detection probabilities due to small population sizes. The

simulation goal was to minimize total effort based on

estimator quality (precision) for various combinations of S
and K. We assumed a maximum employable effort of 60

sites 9 10 surveys per brood. Following Guillera-Arroita
et al. (2010), the optimal design was identified as the

minimum S 9 K yielding a root-mean square error

(RMSE) below 0.075 for the occupancy estimator. We ran
all combinations of S = {10, 20, 30, 40, 50, 60} and

K = {5, 6, 7, 8, 9, 10} using 10,000 iterations. To help

account for differences between broods, simulations were
repeated for the spring and summer broods separately.

Altogether, these 36 combinations of design parameters

and four combinations of input parameters (ŵmean and ŵmin

coupled with spring and summer p̂mean and p̂min) led to

running 144 simulation scenarios.

Estimating abundance with occupancy data

Rather than restrictively assume abundance is equal across

samples (as in MacKenzie et al. 2002, 2003), Royle and

Nichols (2003) developed a model that reasonably assumes
detection probability varies across sample locations pri-

marily according to number of animals. Their model

exploits how variation in abundance by sampled location
(Ni) creates distinct probabilities of detecting occupancy at

each location. The net probability of detection at location i

can be written as pðNi; rÞ ¼ 1% ð1% rÞNi , where r is a
binomial sampling probability that a particular individual is

detected (Royle and Nichols 2003). Average p is then

estimated as a finite mixture of different detection proba-
bilities conditional on Ni. The best (i.e., maximum likeli-

hood) estimate of Ni is summed to estimate average

abundance per sampled unit (k̂). We assumed that patch-

level abundances were Poisson distributed and estimated

the parameters (r, k) using PRESENCE.
We evaluated the Royle–Nichols approach against peak

counts and distance sampling estimates. For peak counts,

we compared the mixture model’s estimated number of

Karner blue per patch (k̂) to the mean raw peak count and,

if necessary, the detection-adjusted peak count (raw peak
divided by r). We computed 95% confidence limits on the

peak count by resampling the data 10,000 times with

replacement. If the mean peak count exceeded the k̂

interval, we concluded k̂ was biased low and that no further
testing was necessary. Otherwise, we repeated the interval

estimation for means of detection-adjusted peak counts.

Because the Royle–Nichols approach assumes that abun-
dance is closed between surveys, we truncated surveys to

the ‘‘peak period’’, including only the peak survey and the

surveys immediately before and after peak. For compari-
son, and because greater survey replication helps when

detectability is low (Royle and Nichols 2003), the full

survey data were also modeled. We ran the null model and
a model parameterized with the best (lowest AICc) occu-

pancy and detection covariates from the previous analysis.
For comparison with distance sampling, we used distance

transects as sampled units in two low-density Pine Bush

subpopulations (37 and 14 transects) and two high-density
Saratoga Sandplains subpopulations (35 and 16 transects).

All four subpopulations received an equal number of surveys

on similar dates and were analyzed using full surveys and
peak period surveys. Distance sampling in Saratoga Sand-

plains was conducted in the same manner as described for

the Pine Bush. Royle–Nichols density was estimated by
truncating the line-transect distance counts to detection/non-

detection data. The estimated number per transect was

converted to estimated number per hectare by prorating the
search area (transect length 9 8 m width) out to patch area.

This quantity was evaluated against the density modeling of

program Distance v6.0 (Thomas et al. 2010). To help com-
pensate for scarce observations, we fit a global model

(combining both subpopulations within each recovery area)

for the detection function and used this model to estimate a
separate average probability density function in each sub-

population.We fit half-normal and hazard-rate key functions

and added cosine adjustments to give a flexible model. The
half-normal with cosine adjustment provided the best

detection function for the Karner blue in Wisconsin (Brown

and Boyce 1998), and the hazard-rate model with cosine
adjustment was best for a group of butterfly species in forest

and open-canopy habitats of Idaho (Pocewicz et al. 2010).

Models were compared using AICc, with sequential selec-
tion of cosine adjustment terms out to a maximum of five.

Butterfly clusters were incorporated by regressing cluster

size against the estimated detection function when signifi-
cant (a = 0.1), or by using the mean cluster size if not.

Results

Occupancy model selection

Detection probability was most influenced by temperature

(evidence ratio against the second best model = 12.6),
occupancy probability by lupine and captive-release (6.9),
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colonization probability by captive-release (7.0), and

extinction probability by peak count (5.2) (Table 2). In
each case the covariate models outperformed the null

model, undermining the constant probability assumption.

As expected, occupancy probability increased with
decreasing minimum distance to a captive-release site, and

was greater at sites exceeding the lupine threshold (0.446)

than at sites below it (0.146). Detection probability
increased with temperature and was somewhat greater

during summer brood surveys than spring brood surveys
(Fig. 1). Because there were two competing factors for

occupancy, two final models were run, one with occupancy

constrained by lupine and the other by captive-release
(Table 2).Thesemodels had similar support (DAICc = 0.72),

thus we used model-averaged occupancy and detection

probabilities for input into SODA.

Optimal design for occupancy monitoring

We ran separate simulations for spring and summer broods
to help account for the temperature-detectability relation-

ship (Fig. 1). Assuming mean occupancy (ŵmean = 0.27)
and detection (see Fig. 1) inputs, even the smallest total

effort (10 sites 9 5 surveys) met the quality threshold of

0.075 RMSE for occupancy. We therefore based design
recommendations on the conservative yet more informative

lowest occupancy and detection probabilities (Table 3). At

the 0.075 threshold, the minimum allowable effort was 360
(40 sites 9 9 surveys) during spring brood and 200 (20

sites 9 10 surveys) during summer brood. A sample of 20

sites instead of 40 during spring brood required 13 surveys
to achieve RMSE\ 0.075, and replication of 9 surveys

instead of 10 during summer brood required 30 sites to

achieve the threshold.

Estimating abundance with occupancy data

Peak counts were as high as 12 butterflies in first brood and

73 butterflies in second brood. The mean observed peak

number of butterflies per patch exceeded density estimates
from the Royle–Nichols mixture model (Fig. 2), suggesting

those estimates were biased low. Density was higher when

modeled from full surveys compared to peak surveys. The
Royle–Nichols estimate was also biased low compared to

density estimates from program Distance, although not as

severely for the low-density Pine Bush subpopulations
(Table 4). Distance and Royle–Nichols point estimates

were potentially similar in two cases, but the relationship

was obscured by high standard error around the Royle–
Nichols estimate. The Royle–Nichols estimate decreased

with peak surveys whereas the Distance estimate increased

(Table 4).

Discussion

Although not central to the study objectives, results support

the prevailing opinion that lupine is the most important
factor controlling Karner blue population dynamics. Out of

seven occupancy covariables, lupine abundance was riv-

aled only by distance to pupal release site in determining
patch use. A caveat is that lupine stem counts for each site

were simplified to binary form (using a threshold derived

from Fuller 2008), potentially reducing sensitivity of the
metric. Furthermore, not all factors expected to have

influence (e.g., nectar diversity) were available for analy-

sis. Grundel and Pavlovic (2007) found that host plant
availability, microclimatic variables, matrix features, and

spatial structure accounted for similar percentages of

Table 2 Model selection, where AICc is the model Akaike Infor-
mation Criterion for small samples, DAICc is the absolute difference
in AICc with the best model, w is the model weight, and K is the
number of parameters

Model AICc DAICc w K

Occupancy (w)

Lupine (L) 500.41 0.00 0.38 6

Captive-release (C) 500.81 0.40 0.31 6

Constant 503.16 2.75 0.10 5

Patch isolation 503.65 3.24 0.07 6

Canopy 504.31 3.90 0.05 6

Subpopulation 504.50 4.09 0.05 6

Patch area 505.54 5.13 0.03 6

Last treatment 507.74 7.32 0.01 7

Detection (p)

Temperature (T) 503.16 0.00 0.88 5

Weather 508.32 5.15 0.07 7

Brood 510.63 7.47 0.02 5

Constant 511.57 8.52 0.01 5

Sky cover 511.68 8.41 0.01 4

Observer 513.96 10.80 0.00 5

Time of day 513.96 10.80 0.00 5

Wind speed 514.01 10.85 0.00 5

Colonization (c)

Captive-release 499.18 0.00 0.84 6

Constant 503.16 3.98 0.12 5

Patch isolation 505.18 6.00 0.04 6

Extinction (e)

Peak count (P) 498.44 0.00 0.78 6

Patch area 501.71 3.27 0.15 6

Constant 503.16 4.72 0.07 5

Final models

w(L)p(T)c(C)e(P) 492.50 0.00 0.59 8

w(C)p(T)c(C)e(P) 493.22 0.72 0.41 8
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variation in Karner blue patch use, implying the need for

multi-metric habitat monitoring in Karner blue recovery

and not simply a focus on lupine. The New York Karner
blue recovery team considers lupine as just one of many

components of habitat quality (Bried 2009; Bried and

Braun 2009).

Optimal design for occupancy monitoring

Butterfly activity is strongly regulated by the thermal

environment (Wikstrom et al. 2009; Cormont et al. 2011),
thus it was not surprising that temperature was the most

important factor influencing Karner blue detection proba-

bility and therefore study design. Parietti (2009) found this
to be true for a short-lived, endangered lycaenid in central

Europe. Under cloudy or cool conditions butterflies are less

active and harder to detect, requiring more surveys to
confirm their absence with reasonable certainty. Based on

our simulations, five surveys per brood, as previously

suggested for the Karner blue (Gifford and O’Brien 2010)

and for other butterfly species (Zonneveld et al. 2003;

Pellet 2008), may be sufficient to confirm absence in some
sites but not all. For Karner blue occupancy monitoring in

the Pine Bush, we recommend a design with at least 20

sites surveyed preferably 10 times each per brood. Under
conservative input parameters, this design achieved a rel-

atively precise (RMSE\ 0.075) occupancy estimator
during summer brood surveys. However, the strong tem-

perature-detectability relationship suggests that more sur-

veys (C13) may be needed during spring brood to
compensate for lower temperatures and reduced butterfly

activity.

Twenty sites could be prohibitive for long-term mon-
itoring if 10 or more surveys are needed per site and

brood. Removal sampling (MacKenzie and Royle 2005),

where a site is no longer surveyed once presence is
confirmed, would help make the monitoring program

more affordable. If a removal design had been used in the
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Fig. 1 Estimated temperature-
specific detection probabilities
(p̂) for the Karner blue butterfly.
Dashed lines indicate 95%
confidence intervals

Table 3 Root-mean square errors for the occupancy estimator under competing design parameters (S = sites, K = surveys), using the minimum

occupancy probability (ŵmin) and detection probability (p̂min) from the final models in Table 2

Simulation input S K
5 6 7 8 9 10

ŵmin & 0.09, p̂min & 0.21
(spring brood p̂)

10 0.4449 0.3611 0.3090 0.2628 0.2124 0.1894

20 0.3734 0.2935 0.2365 0.1912 0.1512 0.1170

30 0.3142 0.2368 0.1732 0.1320 0.0982 0.0838

40 0.2609 0.1829 0.1247 0.0943 0.0627 0.0512

50 0.2128 0.1369 0.0886 0.0612 0.0384 0.0281

60 0.1631 0.0986 0.0630 0.0409 0.0282 0.0190

ŵmin & 0.09, p̂min & 0.26
(summer brood p̂)

10 0.3536 0.2871 0.2312 0.1870 0.1443 0.1172

20 0.2862 0.2086 0.1573 0.1211 0.0916 0.0680

30 0.2246 0.1470 0.1000 0.0771 0.0596 0.0451

40 0.1656 0.1129 0.0738 0.0538 0.0354 0.0241

50 0.1285 0.0797 0.0461 0.0314 0.0206 0.0145

60 0.0908 0.0516 0.0305 0.0187 0.0105 0.0079
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current study, the total number of surveys (summed across

sites) would have dropped from 287 to 235 during first
brood and 385 to 251 during second brood, saving about

130 h of field time altogether. Removal sampling may not

work for butterfly abundance monitoring because the
survey period must span the flight period to accurately

estimate peak emergence and brood size (Nowicki et al.

2005).
The parameter estimates and optimum designs found in

this study may transfer to comparable systems, namely
sparse populations of small-bodied, specialist butterflies in

cold-temperate locations. In the absence of better infor-

mation, the Pine Bush is already using the simulation
inputs and results to help design occupancy surveys for the

Frosted elfin (Callophrys irus Godart), another rare, lupine-
feeding butterfly of barrens, prairies, and semi-natural
grasslands.

Another option for occupancy monitoring is to use arbi-

trary effort and rely on occupancy-detection modeling to
correct false absences. This approach has several obvious

disadvantages. First and foremost, it often leads to ‘‘con-

venience sampling’’, which will always be inferior to
probability-based sampling and sampling according to

objective criteria (Yoccoz et al. 2001). Second, emphasis

should be placed on proper study design and quality-con-
trolled data collection rather than relying on unnecessarily

complex analyses to salvage information gathered on the
basis of poorly designed protocols (MacKenzie and Royle

2005; Bailey et al. 2007; Nowicki et al. 2008). Third,

occupancy-detection modeling requires repeat surveys
(MacKenzie et al. 2006), which precludes removal sampling

if detection occurs on the first survey at a large fraction of

sites. Instead, we recommend a pilot study and simulations
to estimate the minimum total effort (site 9 survey repli-

cation) that allows precise interpretation of the occupancy

rate, combining the recommendation with removal sampling
if necessary. In the long-term, this evidence-based approach

would benefit conservation programs operating under tight

budgets and limited modeling capacity.

Estimating abundance with occupancy data

Patterns of occurrence are often a function of local popula-

tion size and may carry almost as much information as

counts for locally rare or low-density species (Lopez and
Pfister 2001; Royle and Nichols 2003; Pellet et al. 2007).

Indeed the Royle–Nichols approach has proven valuable for

low-density birds (e.g., Dreitz et al. 2006; Bried et al. 2011).
Bried et al. (2011) found that it increased raw point count

densities of shrubland birds more than five-fold on average,

and reported similar or slightly lower model abundance
estimates from binary as compared to count data.
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Fig. 2 Estimated population density across 50 habitat patches based
on peak counts and the Royle–Nichols mixture model for detection/
non-detection data. Error bars depict 95% confidence intervals

Table 4 Karner blue estimated population density (no. ha-1) using detection/non-detection data modeling (Royle–Nichols approach) and count
data modeling (Distance) in low-density (Pine Bush) versus high-density (Saratoga Sandplains) metapopulation recovery areas

Recovery area Subpopulation Efforta Spring brood Summer brood

Royle–Nichols (SE) Distance (SE) Royle–Nichols (SE) Distance (SE)

Pine Bush Apollo Full 3.7 (4.1) 3.9 (1.2) 1.1 (0.4) 5.1 (1.4)

Peak Inestimable 7.1 (2.6) 0.8 (0.6) 5.7 (2.5)

Kings road Full 2.8 (1.4) 9.5 (2.8) 5.1 (6.6) 5.6 (2.4)

Peak 2.0 (0.9) 16.3 (5.3) 0.9 (0.6) 9.7 (4.4)

Saratoga Sandplains Edie road Full 18.7 (8.9) 523.6 (48.9) 8.4 (2.6) 216.1 (33.0)

Peak 10.5 (3.7) 748.7 (62.6) 8.7 (4.1) 358.7 (64.9)

Old Gick Full 6.0 (2.0) 111.6 (8.1) 23.6 (22.0) 232.2 (21.0)

Peak 4.2 (1.4) 119.2 (11.0) Inestimable 417.5 (39.3)

a Full = six first brood surveys and eight second brood surveys; Peak = three surveys per brood, including the peak count survey and the
surveys immediately before and after
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It makes intuitive sense for detection/non-detection

data to underestimate abundance of large populations and
to approximate or overestimate abundance of small pop-

ulations. However, the Royle–Nichols model appeared to

underestimate Karner blue abundance regardless of pop-
ulation size. The model may not work well for relatively

high local abundances and low individual detection

probabilities (Nowicki et al. 2008). Patch-scale peak
counts ranged over several orders of magnitude with

coefficients of variation exceeding 200%, indicating that
not all patches contained low Karner blue densities.

Additionally, individual detection probabilities were gen-

erally low (r\ 0.3), and our samples included fewer than
the 10 surveys recommended when r\ 0.3 (Royle and

Nichols 2003). Fewer surveys mean fewer possible

detection histories and parameter space that is sparsely
covered by the maximum-likelihood estimates, reducing

estimator precision especially under low detectability

(Guillera-Arroita et al. 2010).
Another explanation could be violation of the closure

assumption (Nowicki et al. 2008), as butterflies undoubt-

edly emerged and died or immigrated and emigrated
between surveys. Collapsing surveys around suspected

peak emergence did not appear to mitigate the violation,

perhaps because of lost power with only three surveys. To
safely assume constant local abundance for short-lived

animals, the model may need data gathered from spatial

subsampling (Guillera-Arroita 2011) or repeat sampling on
the same days (Nowicki et al. 2008; Parietti 2009). Another

contributing factor may be that the Poisson (random) prior

spatial distribution was not a reasonable assumption in the
highly variegated, heavily managed Pine Bush landscape.

Other error distributions are theoretically more reasonable

for small or aggregated populations, such as the negative
binomial or zero-inflated Poisson (Zhou and Griffiths 2007;

Wenger and Freeman 2008; Joseph et al. 2009).

Conclusions

Occupancy monitoring seems reasonable for situations like
the Pine Bush where currently the wild Karner blue pop-

ulation is small and 60% of lupine patches are occupied. If

populations are large and occupy most of the habitat area,
then detection/non-detection data may not be able to dis-

criminate patterns. None of the Pine Bush habitat patches

during the 2010 survey exceeded the minimum threshold of
60 observations suggested for accurate distance data

modeling (Buckland et al. 2001). As a result, reliable

abundance estimates may not be attainable without pro-
hibitively large survey effort. Nevertheless, we suspect that

in many conservation programs detection/non-detection

data will not gain acceptance unless those data convert to
abundance.

Unfortunately, our study suggests that occupancy data

may not provide a reliable shortcut in abundance-based
conservation planning for sparse butterfly populations.

Haddad et al. (2008) mentioned the Royle–Nichols model

overcomes some of the limiting assumptions of distance
sampling but needs further development for butterflies.

Therefore, conservation planners dealing with sparse but-

terfly populations may have to find ways of incorporating
occupancy as a metric in its own right, or find ways to work

with raw counts. Despite obvious flaws, butterfly count-
index methods may actually provide reliable population

estimates (Collier et al. 2008; Haddad et al. 2008; Isaac

et al. 2011; but see Harker and Shreeve 2008). Counting at
peak emergence can facilitate simple estimation of brood

size (Nowicki et al. 2005), and if peak counts are suffi-

ciently large (e.g.,[30 butterflies; Gross et al. 2007), then
Zonneveld’s (1991) model could help in tracking coarse

population trends. Conservation programs for sparse but-

terfly populations should consider a combination of count-
index and occupancy monitoring in lieu of mark-recapture,

distance sampling, and other more costly methods.
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